PRACTICAL STUDIO
SOUNDPROOFING
PART 1: Waking up the neighbours with
the latest turbo folk masterpiece is a major concern for many project studio
owners. While making music is enormous fun for those actually doing it, it's often the case that other members of the household and neighbours are less appreciative, so it's often necessary to consider some sort of soundproofing to maintain the peace. The purpose of the first part of this series is to explore problem areas and establish a few basic physical facts about soundproofing. From next month, I'll be looking at solutions to the most common soundproofing situations.
Most of the practical measures I'm going to describe are within the scope of a competent DIY enthusiast, and nearly all the materials are available from your local builders' merchant. There are some specialised materials that must be purchased from speciality suppliers, but I'll include some addresses for you to contact before the end of the series.
Firstly, the so-called inverse square law means that sound reduces in level the further it travels from the source (simply because it is being shared over a larger area).
Secondly, sound is progressively absorbed (and converted into heat) by any surfaces that it encounters and by the air that it passes through. (By the way, because we don't need a lot of acoustic energy to produce a subjectively loud sound, the heating effect of sound absorption in a typical studio can be considered to be negligible.)
The challenge in designing effective soundproofing is to convert as much of the unwanted sound to heat as possible. The simplest way to attenuate sound is to put a solid wall in its way, and one of the fundamental rules that you should try to remember is that every time you double the mass of a wall you'll roughly halve the amount of sound transmitted. This means that to halve the sound leakage through an existing wall you'd have to double its thickness.
|
Another keystone of acoustic theory is that as the sound frequency is reduced, the isolation provided by a structure also falls. In fact, for every octave drop in pitch, the sound isolation is halved. From this, it's easy to see that soundproofing against high frequencies is not too much of a problem, but deep bass is very difficult to contain. You only have to walk past a nightclub to hear the amount of bass that can escape through solid brick walls!
Because attenuation is frequency-dependent, the effectiveness of a particular sound-absorbing partition design or material is generally measured in dBs, for a set of frequencies averaged over the range 100Hz to just over 3kHz. This figure is called the Sound Reduction Index, or SRI. A single brick wall might, for example, have a quoted SRI of 45dB, while a double-thickness wall made from the same material might be rated at around 51dB. This latter figure represents a lot of attenuation, but if you're producing levels of around 100dB on one side of the wall, around 50dB will still make it through to the other side - and remember that this figure will be worse at the bass end. If you're directly adjoining a neighbour and have just a solid brick wall between you, it's unlikely that the degree of isolation will be adequate if you monitor loudly, and lightweight partition walls or breeze block will fare rather worse.
To give an example of typical SRIs, a light panelled internal door has an average SRI of around 15dB or less, and at low frequencies it will be significantly worse. On the other hand, a brick cavity wall, plastered on the inside, can have an average SRI of better than 50dB.
"A soundproof room is
an airtight room."
|
If floors are a pain, ceilings are 10 times worse, because whatever soundproofing material you add, you're going to have to find some way to hold it up there - with floors, at least gravity is on your side. Short of suspending wood-wool or sandbags over your head, or building a substantial false ceiling below the original, there's not a lot you can do that's really effective, but a couple of layers of thick underfelt below the carpet in the room above can help a lot.
Just to illustrate how difficult the problems can be, a professional design would usually involve building a completely separate inner room inside an existing room, isolated from the original floor by blocks of neoprene rubber. Aside from the obvious cost factor, most people who have home studios simply don't have the space to do this - but just in case you're in a position to try it, I'll be covering the basics of room-within-room construction later in the series. A further advantage of this system is that adding internal acoustic treatment is often simplified, as a properly designed inner shell makes room acoustics more predictable.
At its most basic, to achieve good sound isolation you need structural mass and airtight seals around doors and windows, but you also need to consider structure-borne sound and find ways to avoid it. This is important because sound travels very efficiently as mechanical vibrations through solid structures, such as wooden joists or steel girders. There's little point in getting everything else right if your soundproofing is rendered ineffective by an ill-considered structural feature.
|
If you're lucky enough to be deciding on new studio premises you can save yourself a lot of time and money by taking particular note of the existing structure of the building. You also need to think about its location and any noisy industrial activities that may be taking place close by. Perhaps the easiest location to deal with is a ground-floor premises in a heavily-built brick or concrete building with a solid floor. However, if the ceilings aren't heavy, you'll need to know what is going on above you in the building, and whether its use may change to something less studio-friendly in the future. Also listen for low-frequency rumble from traffic or trains - even with a solid concrete floor, you may have to resort to building a floating floor to keep outside noise to a minimum, and if this is the case, does the room have the necessary height?
If you're looking at an upstairs room, find out what is happening above, below and to either side of you. Some businesses may close down at night when studios are traditionally busy, but can you afford to have your hours restricted, and are any of the neighbours likely to go in for sudden extended overtime? If you are planning to do any serious acoustic treatment or build a 'room-within-a-room' inner shell, you must allow plenty of space for the acoustic treatment. Even a simple inner shell will need a couple of feet of free space above it to work effectively. A simple floating floor may be between three and six inches deep, depending on how you build it, and most rooms will stand this. However, if you're putting in a false ceiling, you need to allow almost as much room as for an inner shell room, and certainly not less than about 18 inches.
For most project studio owners, major construction is out of the question, so you'll need to rely on uprating what already exists. You may also need to compromise on the amount of noise you make. If you can't get the noise down as much as you want by soundproofing, you may have to find a compromise that keeps all parties happy. For example, the majority of private studio owners record part-time, so it may be possible to record drums or other loud instruments when the neighbours are out or, at any rate, not at night when they are trying to sleep.
No comments:
Post a Comment